Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs.
نویسندگان
چکیده
BACKGROUND The enormous physicochemical and structural diversity of metal oxide nanoparticles (MeONPs) poses significant challenges to the testing of their biological uptake, biodistribution, and effects that can be used to develop understanding of key nano-bio modes of action. This has generated considerable uncertainties in the assessment of their human health and environmental risks and has raised concerns about the adequacy of their regulation. In order to surpass the extremely resource intensive case-by-case testing, intelligent strategies combining testing methods and non-testing predictive modeling should be developed. METHODS The quantitative structure-activity relationship (QSARs) in silico tools can be instrumental in understanding properties that affect the potencies of MeONPs and in predicting toxic responses and thresholds of effects. RESULTS The present study proposes a predictive nano-QSAR model for predicting the cytotoxicity of MeONPs. The model was applied to test the relationships between 26 physicochemical properties of 51 MeONPs and their cytotoxic effects in Escherichia coli. The two parameters, enthalpy of formation of a gaseous cation (▵Hme+) and polarization force (Z/r), were elucidated to make a significant contribution for the toxic effect of these MeONPs. The study also proposed the mechanisms of toxic potency in E. coli through the model, which indicated that the MeONPs as well as their released metal ions could collectively induce DNA damage and cell apoptosis. SIGNIFICANCE These findings may provide an alternative method for prioritizing current and future MeONPs for potential in vivo testing, virtual prescreening and for designing environmentally benign nanomaterials.
منابع مشابه
Synthesis and Investigation the Catalytic Behavior of Cr2O3 Nanoparticles
The use of an inorganic phase in water-in-oil (w/o) microemulsion has recently received considerable attention for preparing metal oxide nanoparticles. This is a technique, which allows preparation of ultrafine metal oxide nanoparticles within the size range 40 to 80 nm. Preparation of nano chromium (III) oxide studied investigated in the inverse microemulsion system. Therefore the nucleation o...
متن کاملModeling of Interactions between the Zebrafish Hatching Enzyme ZHE1 and A Series of Metal Oxide Nanoparticles: Nano-QSAR and Causal Analysis of Inactivation Mechanisms
The quantitative relationships between the activity of zebrafish ZHE1 enzyme and a series of experimental and physicochemical features of 24 metal oxide nanoparticles were revealed. Vital characteristics of the nanoparticles' structure were reflected using both experimental and theoretical descriptors. The developed quantitative structure-activity relationship model for nanoparticles (nano-QSAR...
متن کاملA Study of Catalytic Performance of Co3O4 and Cu-Co Nano Metal Oxides in Combustion of Aromatics
Two Cu-Co and Co3O4 oxides were synthesized by the conventional sol-gel auto-combustion and their physical-chemical properties were characterized by XRD, FTIR, SEM, TPR and XPS. The XRD results indicated that copper-cobalt oxide appeared in a mixture form of Cu0.15Co2.85O4 spinel and CuO phases, whereas the cobalt oxide exhibited in the pure form of Co3O4 spinel. The FTIR approved the formation...
متن کاملCurrent advancements in applications of chitosan based nano-metal oxides as food preservative materials
Objective(s): A remarkable growing effort has been conducted by several researchers to fabricate food packaging materials which are able to protect foodstuffs and enhance their shelf-life from food-borne pathogens and fungal attack which causes great damage to the food industries. Recent studies has focused on the potential applications of nano-metal oxides in food packaging area. Method...
متن کاملComparative study of predictive computational models for nanoparticle-induced cytotoxicity.
With the increasing use of nanomaterials incorporated into consumer products, there is a need for developing approaches to establish "quantitative structure-activity relationships" (QSARs). These relationships could be used to predict various biological responses after exposure to nanomaterials for the purposes of risk analysis. This risk analysis is applicable to manufacturers of nanomaterials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotoxicology
دوره 10 9 شماره
صفحات -
تاریخ انتشار 2016